LAB 4 – STUDY AID

Appendicular Skeleton

- i. Know the names, ranges of motion, and which bones form the articulations for the various joint types
 - Ex: the sternoclavicular joint is a saddle joint composed of the sternum / clavicle & allows moderate freedom of movement
- ii. For exam purposes, muscle movements will refer to the JOINT it moves. (For example, the bicep flexes the elbow.)
- iii. Make Sure you are always orienting yourself to the proper 'Anatomical Position'
 - Specifically note the palms face anteriorly with the thumbs located laterally (outward)
 - Learn to recognize the difference between the tibia/fibula and the ulna/radius (and where each is positioned)
- iv. Recognize the axes in the hand and in the foot (3rd metacarpal/2nd metatarsal)

Carpals: Multiple methods to navigate the carpals → mostly incompatible with each other (find one that works for you!)

ii. Some Lovers Try Positions That They Can't Handle

From lateral to medial, in two rows [like a type-writer]:

Scaphoid, Lunate, Triquetrum, Pisiform,

Trapezium, Trapezoid, Capitate, Hamate

iii. Carpals 'CLAP' -> hand ; Tarsals 'TAP' -> foot

iv. Another method to learn to ID carpals: identify one of the carpals you find easiest to recognize and learn the rest relative to it

Ex. Hamate has a 'spike' on the palm side*

*Good way to orient yourself, regardless of mnemonic method!

v. Carpals form groove on hand at the Scaphoid -- this has been called the anatomical 'Snuffbox'. (guess its use)

Note: the carpal bones will NOT be separated for exam purposes (students will be given the entire hand and have to identify the starred carpal bone)

Mnemonics and learning aids:

- i. Radius: "thumb side" you turn on the radio using your thumb / radius rotates.
- ii. Ulna = 'U' shaped; looks like a wrench
- iii. Olecranon process (on ulna) = elbow point
- iv. "Feeble Fibula" (when trying to remember the tibia vs. the fibula -> fibula smaller)
 - → Fibula = smaller than tibia -> think about telling a 'little fib'
- v. Patella looks 'heart-shaped' when positioned properly
- vi. Talus on "top" (when trying to distinguish calcaneus from talus)
- vii. Calcaneus = heel (heel develops a lot of callous)
- viii. Movement mnemonics
 - 1. Supination turn your hands so that you can eat soup out of them
 - 2. Pronation motion you make when you dribble the basketball like an NBA "pro"
 - → Also Remember "Sup, Pro?"

Movement mnemonics (cont.)

- 3. Abduction movement away from your body (like being abducted by aliens)
- 4. Adduction "Adding to" your body; movement toward your body
- 5. Plantarflexion "Point"
- 6. In General:
 - a. Flexion = reducing angle of a joint
 - b. Extension = increasing angle of a joint

ix. Sound-alikes [CAUTION!]:

- 7. Coronoid process of ulna vs. coracoid of scapula
- 8. Epicondyles of humerus vs. medial and lateral condyles of femur
- 9. Greater & lesser tubercles of humerus vs. greater & lesser trochanter of femur
- 10. Lateral malleolus of fibula vs. medial malleolus of tibia

- a. <u>Acromion = 'highest</u> shoulder' [is most superior part]
 - i. Think <u>Acr</u>opolis = 'highest city' (e.g., Athens)
- b. Coracoid & Coronoid = 'crow form'
 - i. Because they Look like hooked beaks of a crow
- xi. New game show: Would a baby fit through this??
 - 11. Females have a much wider subpubic angle, 90+ degrees

- Male angle is approximately the angle you make when forming a peace sign with your fingers
- Females have larger 'hole' for baby head: (Larger Pelvic inlet & larger Pelvic Outlet)
- 13. Looking down through pelvis: female's 'hole' shaped like Mickey Mouse
- Y

More accurately, Males =
 'deformed mickey mouse',
 females = 'beautiful?
 Mickey mouse'

Abduction

Muscle structure and contraction (possibly helpful for lecture and lab)

I recall coming across a very useful flash animation when I took anatomy many years ago. Although the original animation does not exist, there is now a newer version accompanied by a boring guy narrating, but it still has all of the useful labels and detail of the original version. I highly recommend this animation to get a good visualization of muscle structure and how the muscle contracts (at a molecular scale):

http://www.physioviva.com/movies/muscle struc-func/index.html

Click on the 'Scene Menu' option (bottom right corner of animation window) to see a table of contents. Otherwise it starts at the beginning and goes through each section.

Same animation now available as series of Larry Keeley YouTube videos!:

https://www.youtube.com/playlist?list=PL474563250E2EC0B4

Also for a cheesy video explaining things in less detail:

http://www.dnatube.com/video/4810/Structure-of-muscle-and-mechanism-of-contraction

Scane Manu

Title

Muscle Structure — Sverview

Surcomare Structure

Surcomare Soutroction

Surcomare Mulacular Segunization

Site in a manufacture of Secular Structure

References and Secular Secular Secular Structure